第141章 印度诺贝尔奖获得者之二科拉纳

这就是印度 开心可可 2158 字 2个月前

1971年,科拉纳和他聪慧的学生谢尔·克莱普在着名的《分子生物学杂志》上发表了一篇具有开创性意义的论文。在这篇论文里,他们首次提出了一个令人惊叹的概念:利用DNA聚合酶来实现修复合成。这个概念无疑成为了后来PCR技术的早期构想,犹如一颗璀璨的星辰照亮了科学研究的天空。

科拉纳明确地指出,如果能巧妙地运用DNA变性、与恰当的引物杂交,并借助DNA聚合酶延伸引物等步骤,那么就有可能合成珍贵的tRNA基因。如此大胆而又充满创新精神的设想,让人们对核酸体外合成的可能性有了更深入的理解。然而,尽管这个设想极具前瞻性,但它却生不逢时。那时的科技水平还不足以支持这样的设想付诸实践,尤其关键的是,热稳定DNA聚合酶尚未被人类所发现。这个技术缺失如同一座难以逾越的高山,使得这个伟大的设想暂时被埋没在了历史的尘埃之中。但正如每颗种子都需要等待适宜的季节才能破土而出,这个设想的价值并未因此而磨灭,而是在未来的某一天,终于绽放出绚烂的光芒。

1972年在科拉纳加盟麻省理工学院后,他领导的一个研究小组利用人造核苷酸合成了第一个人造基因。四年后,他宣布人造基因在细菌细胞内正常发挥作用。20世纪80年代,他合成了视网膜紫质基因——人类视觉中极为重要的感光蛋白质。与此同时,他还进行了与色素性视网膜炎相关的视网膜紫质突变的研究。

威斯康辛大学生物化学教授阿西姆·安萨里(Aseem Ansari)说:“(遗传工程)整个发展都是基于科拉纳的化学理论,他是我的灵感来源。”

三、获得诺贝尔奖

1953年,沃森、克里克和富兰克林确定了DNA的结构,这种双螺旋链状结构由四种碱基组成:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C),以及鸟嘌呤(G);在RNA中,尿嘧啶(U)代替了胸腺嘧啶。但是DNA分子所携带的遗传信息是如何转译到蛋白质生物合成过程中的呢?

俄国物理学家乔治·伽莫夫假定,三个连续排列的核苷酸(密码子)可以定义64种氨基酸完全可以满足制造蛋白质所需的所有20种氨基酸的编码。1961年,马歇尔·尼伦伯格和J·海因里希·马太在美国国立卫生研究院一起工作,力图确定当单一种的核苷酸被加入一份反应混合液后,将形成哪种氨基酸。密码子UUU能形成苯基丙氨酸,这就破解了遗传密码的第一个字母。没过多久,CCC被发现能生成脯氨酸。威斯康星大学麦迪逊分校的科拉纳生成了更加复杂的序列,它由重复的双核苷酸序列构成,其起始序列是UCUCUC,译解的产物是丝氨酸-亮氨酸-丝氨酸-亮氨酸...之后,其余的密码子也一一被确定。

1964年,康奈尔大学的罗伯特·霍利发现并确定了转运RNA(tRNA)的化学结构,从而揭开了信使RNA(mRNA)和核糖体之间的联系。制造一个蛋白质所需的信息先是附着到tRNA上,然后在核糖体中根据mRNA进行转译。每个tRNA只会识别mRNA上的一个密码子,而且每个tRNA只会携带20种氨基酸的其中一种。蛋白质是由氨基酸一个个拼接而成的。尼伦伯格、科拉纳和霍利共同获得了1968年的诺贝尔奖。

1966年科拉纳加入美国国籍。1970年,科拉纳离开威斯康辛大学去了麻省理工学院,并一直工作到2007年退休。

2011年11月9日,科拉纳在美国马萨诸塞州康科德城去世,享年89岁。